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Introduction

Driver distraction and road traffic safety

% Fact: 10 - 16 % of fatal traffic accidents are caused by distracted driving (e etal, 2019)
+» Ironies of automation: driver distraction increases with automation level ( etal, 2016)
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Alkinani et al. 2020; Kashevnik et al. 2021

> Research on driver posture monitoring is falling behind



Introduction

In-vehicle driver posture monitoring

A challenging task due to Limitations of existing systems A critical issue
» Body close to vehicle interior » Incomplete body coverage (head or hands) » Lack of in-vehicle driver
» Suboptimal camera placement » 3D pose estimation rarely investigated posture datasets
» |llumination, occlusions » |nsufficient investigations of supplementary methods * Measurement: images, etc
. .. . . = Annotations: segmentations, joint
= Accuracy requirement = Limited validation centers, etc

NS

Yuen and Trivedi. (2018) Pan et al. (2021) i
InCar (Borges et al. 2021)

Researchers are still struggling to find more useful data and better algorithms for driver posture monitoring



Objectives

> To create an in-vehicle driver posture dataset in order
to facilitate the research on driver posture monitoring

> To propose more reliable driver posture estimation
methods



AutoConduct dataset

Data collection and data processing

Twenty-three Drivers (11 females)
» Age: 22 — 65 years
* Height: 153 — 195 cm
. BMI: 18.2 — 43.4 kg/m?

42 in-vehicle tasks
* Driving tasks
* Non-driving related tasks

Motion capture system
* 14 VICON cameras
» 78 reflective markers

Monitoring system
» Kinect V2
» PMD pico monstra
 SoftKinetic DS325
» 2 Xsensor pressure mats

Nature of data content (~2 hours recording)
» Anthropometry measurement
» Motion capture data (50 fps)
» Depth image flow (25 fps)
» Color image flow (25 fps)
 Infrared image flow (25 fps)
» Pressure distribution (25 fps)

Kinect V2 (ontop of right A pillar)

Depth image (m) Color image

PMD pico monstra (above center rear mirror)

e (m) Infrared image

SoftKinetic DS325 (under steering wheel)
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Mocap and reconstructed posture by RPx
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Data alignment after camera
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AutoConduct dataset
Data augmentation

Open Source tool for making 3D characters

COMMUNITY

RPx joint angles

Synthetic
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Target

Character .
definition Animation

Real driver posture
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AutoConduct dataset

Comparison with state-of-the-art
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TICam (Mirbach and El-sherif 2021),
synthetic dataset

. heek slid 2 cam_driver_left
cheekx sliaers 3 -
. R A= .
v B

/Experiment data:

~130K frames of IR/RGB/Depth
images, pressure data and 3D
skeleton

Synthetic data:

~12M frames of images, body
segmentations and 3D skeleton
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Driver anomaly detection dataset (Kopuli et
al. 2021), no posture annotations

2 a8
InCar (Borges et al. 2021), IMU for ground
truth of upper-body pose



3D skeleton (N = 129282)
Average accuracy across seven body joints: 91%

Head pose (N = 129282)

* Mean errors of head orientation and position less than 11 deg and 2 cm in 96.3 % of
all data samples

Feet positions (N = 5216 / 8024)

» Average classification accuracy of left and right foot is 93 % and 88 %, respectively

Posture estimation

Vision-based monitoring
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Posture estimation

Pressure measurement based monitoring
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Random forest —

classifiers

Frame
Continuous prediction of trunk postures by Leave-one-out cross-validation

Trunk posture classification (N = 3999)

* Average accuracy of 91 % from leave-one-out tests

Feet position classifications (N = 5216 / 8024)

» Average classification accuracy of left/right foot positions: 93 % / 74 % 10



Overview of monitoring system
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Future work

 Refinement of the proposed data augmentation pipeline

— Driver-object interaction, sensor noise, vehicle models
— Real driver motions will be made open access

 Improvement of proposed posture monitoring functions
— Adaptation of more advanced algorithms for posture estimation

» ldentification of critical postures based on posture monitoring &

evaluation of their safety impact
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