

WHO BENEFITS FROM NAPPING IN AUTOMATED DRIVING?

EFFECTS OF CHRONOTYPE ON SLEEP INERTIA.

Markus Tomzig, Dr. Christina Kremer

Wuerzburg Institute for Traffic Sciences (WIVW)

8th International Conference on Driver Distraction and Inattention Gothenburg, 20.10.2022

Drivers become passengers

New use case: sleeping

Mind off

Sleep Inertia

WHAT IS SLEEP INERTIA?

TRANSITION BETWEEN SLEEP AND WAKEFULNESS

- "Grogginess"
- Duration varies; normally max. 30 minutes
- Physiological correlates related to those for sleep (Trotti, 2017)
- Possible function: quick fall asleep after undesired wake-up (Hilditch & McHill, 2019)
- Impaired performance in different types of tasks (Tassi & Muzet, 2000)
- Impaired driving behavior and driving mistakes (Wörle, Metz & Baumann, 2021)

RESEARCH QUESTIONS

IMPACTS OF SLEEP INERTIA ON SUBJECTIVE WELLBEING AND DRIVING BEHAVIOR

- **Do we benefit** from sleeping during automated driving?
- **Who** benefits from napping in automated driving?
 - Effects of chronotype on Sleep Inertia
- **When** do we benefit from napping in automated driving?
 - Effects of time of day on Sleep Inertia
 - Effects of time course on Sleep Inertia

183

Interior and mockup of the dynamic driving simulator at the WIVW.

SETTING & SAMPLE

Exterior and motion platform of the driving simulator.

- Dynamic driving simulator at Wuerzburg Institute for Traffic Sciences (WIVW)
- ► Sample
 - ► N = 20
 - Prescreening and selecting according to individual chronotype (rMEQ; Randler, 2013)
 - n = 10 morningness types
 - n = 10 eveningness types

METHODS STUDY DESIGN

2 experimental drives

- Beginning of experimental session
 - Early (6 a.m.)
 - ► Late (9 p.m.)
- Max 4 hours of sleep in the night before session
- Duration ca. 2:45 h
- Arrival and departure by taxi

1 reference drive

- Beginning of the sessions during daytime
- Normal sleep in the night before participation
- ► Duration ca. 1 h

Partially randomized order of sessions

PROCEDURE

METHODS MANUAL DRIVES

- Monotonous drive on freeway
- Every 5 min: self-rating of subjective state [scale: -4 to +4]
 - Arousal
 - ► Wellbeing
 - Motivation to continue manual driving
- Both manual drives are divided into 6 intervals (7 inquiries)
- Acoustic vigilance task

AUTOMATED DRIVING

- Reclined seat during automated driving
- Instruction: sleep
- EEG & Sleep scoring according to AASM (2017)

INDEPENDENT VARIABLES

Chronotype

- Morningness type
- Eveningness type

Time of day

- Morning (6 a.m.)
- Evening (9 p.m.)
- ► (Daytime)

Drive/driver state

- Pre sleep (sleepiness)
- Post sleep (sleep inertia)

Inquiry/Interval

► 7 inquiries

► 6 intervals

DEPENDENT VARIABLES

Subjective state

- Arousal
- ► Wellbeing
- Motivation

Driving behavior

► Speed

 Standard Deviation of Lane Position (SDLP)

We alcovert (See alcovert (

We gut fühlen Sie sich im Moment?

We game michte Sie im Monatot di nanwele falvr fortietam

Am Ende der manwellen Falvt Frage von Versuchsleitenen

100

2.1

RESULTS MANIPULATION CHECK: SLEEP

- EEG-verified sleep in 37 of 40 driving sessions
- Deep sleep (N3) in 13 driving sessions, mainly in the evening
- Deeper sleep when chronotype did not fit the time of day

SUBJECTIVE WELLBEING

- Pre sleep: constant decrease in arousal and wellbeing
- Post sleep: stabilization on low level
- Interaction effect chronotype * time of day: Morningness types differ significantly between the times of day and subjectively benefit from a nap in the morning Arousal: F(1, 18) = 8.14, p = .011, η_p² = .311 | Wellbeing: F(1, 18) = 5.08, p = .037, η_p² = .220

DRIVING BEHAVIOR: LANE KEEPING

- Pre sleep: constant impairment in lane keeping (SDLP)
- Post sleep: stabilization on a poor level
- No significant main and interaction effects between chronotypes and times of day

DRIVING BEHAVIOR: SPEED

 Participants drove significantly faster when the time of day fitted their individual chronotype F(1, 18) = 17.78, p = .001, η_p² = .497

Mean speed significantly lower post sleep compared to pre sleep F(1, 18) = 13.65, p = .002, η_p² = .431

- Post sleep: under sleep inertia, speed and wellbeing are significantly correlated^a:
 - ▶ Pre sleep: *r*(219) = -.018, *p* = .794
 - Post sleep: r(219) = .266, p < .001</p>

Compensation for lower fitness?

Note: a) Correlation coefficient for repeated measures analyses

SUMMARY & DISCUSSION

SUMMARY & DISCUSSION

Do we benefit from sleeping during automated driving?

- Yes and no: sleep averted a further decrease of subjective arousal and wellbeing
- Small benefit for **morningness** types sleeping in the morning
- **Trade-off** between recovery and sleep inertia
- Closer link between subjective state and driver behavior under sleep inertia compared to sleepiness

Limitations

- Partial sleep deprivation
- Small sample
- Simple driving scenario

Future research

- Effects of sleep quality on sleep inertia
- Effects of sleep inertia on complex driving tasks

THANK YOU FOR YOUR ATTENTION!

Würzburger Institut für Verkehrswissenschaften GmbH

Robert-Bosch-Straße 4 D-97209 Veitshöchheim Germany <u>www.wivw.de</u>

Markus Tomzig tomzig@wivw.de

Realisierung einer positiven User Experience mittels benutzerfreundlicher Ausgestaltung des Innenraums für automatisierte Fahrfunktionen Gefördert durch:

Bundesministerium für Wirtschaft und Klimaschutz

aufgrund eines Beschlusses des Deutschen Bundestages

REFERENCES

- AASM. (2017). The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications. American Academy of Sleep Medicine.
- Hilditch, C. J., & McHill, A. W. (2019). Sleep inertia: current insights. Nature and science of sleep, 11, 155.
- SAE. (2021). Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles (Vol. J3016). SAE International.
- Tassi, P., & Muzet, A. (2000). Sleep inertia. *Sleep medicine reviews*, 4(4), 341-353.
- Trotti, L. M. (2017). Waking up is the hardest thing I do all day: sleep inertia and sleep drunkenness. Sleep medicine reviews, 35, 76-84.
- Wörle, J., Metz, B., & Baumann, M. (2021). Sleep inertia in automated driving: Post-sleep take-over and driving performance. Accident Analysis & Prevention, 150, 105918.