

ATTENTIONAL DEMANDS OF USING AN APPLICATION FOR REAL-TIME TRAFFIC INFORMATION FEEDBACK IN ROAD OPERATORS' VEHICLES

Lara DESIRE

Cerema, PsyCAP Research Team

8th International Conference on Driver Distraction and Inattention (DDI 2022) Session 4.1 HMI Design and Countermeasures 20/10/2022

INTRODUCTION (1/2)

Context

- European projects for testing and implementing Cooperative Intelligent Transport Systems (C-ITS services) to alert road users in real time
- Deployment of an application in road operators' vehicles
- Distraction issue raised by study of acceptability among French road operators agencies (SCOOP project; Chahir et al., 2019)

INTRODUCTION (2/2)

Study objective

 Assessment of attentional demand among French road operators during visual-manual interaction tasks with the application

Study's principle

- In-vehicle systems assessment methodologies (Strayer et al., 2019)
- Indicators of subjective, temporal, visual and cognitive demands (Strayer et al., 2019)

Road operators' task to report an event

- Three levels of visual-manual interaction complexity
 - Screen 1: 1 press
 - Screen 2 Top: 2 presses
 - Screen 2 Bottom: 1 press, scrolling plus 1 press
- Not requiring more than 3 control actions (Campbell et al., 1998, 2012)

Screen 2

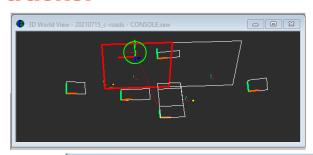
METHODOLOGY (1/5)

Participants

- Employees of one of the French public road operators' agencies (DIR Ouest)
- 20 participants (all males) recruited from 3 different professional groups
 - Difference in their knowledge of the C-ITS services
- 18 participants completed the whole experiment

Driving route

• Two-lane dual carriageway (110 km/h)

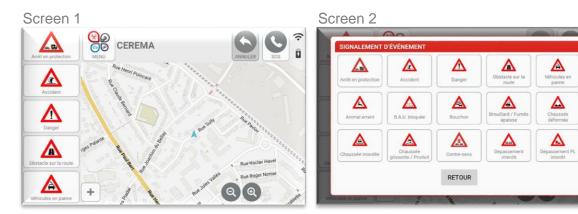


METHODOLOGY (2/5)

Equipment

Nental workload scale (Reimer at al., 2013) Eye-tracker

Cameras Detection-Response Task kit



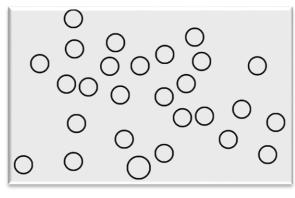
METHODOLOGY (3/5)

Comparison of the attentional demand of different secondary tasks

SCOOP application visual-manual tasks (3 levels)

- Screen 1: 1 press
- Screen 2 Top: 2 presses
- Screen 2 Bottom: 1 press, scrolling plus 1 press

Manual radio tuning task (AAM, 2006)


• « acceptable » task

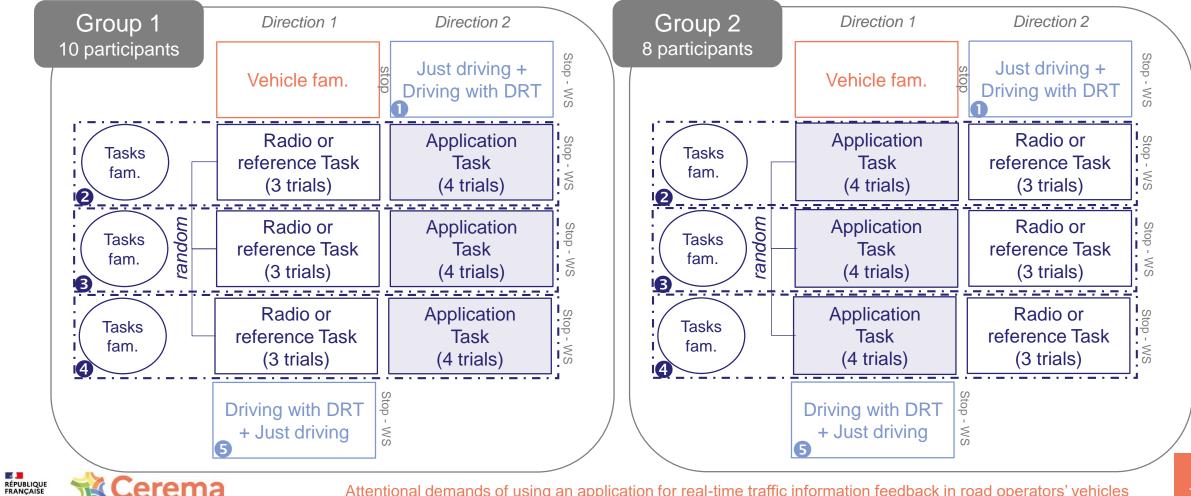
Benchmark

Attentional demands of using an application for real-time traffic information feedback in road operators' vehicles

- High demands « artificial » tasks (Strayer et al., 2019)
 - High visual demand (Surrogate reference task SuRT)

• High cognitive demand (2-back task)

Stimulus	5	3	7	0	2	
Response	silence	silence	5	3	7	


References

WS : workload scale

METHODOLOGY (4/5)

Procedure

IMAT & TERRITOIRES DE DEMAIN

METHODOLOGY (5/5)

Calculation of 4 standardised scores for application and radio tasks (Strayer et al., 2019)

Subjective demand perceived mental workload (Reimer et al., 2013)

 $\frac{Application \text{ or } radio \ task \ - Driving \ with \ DRT \ task}{2 - back \ task \ + SuRT \ task} - Driving \ with \ DRT \ task$

Visual demand % of time with eyes on the road ahead (eye-tracker, SmartEye)

Driving with DRT task – Application or radio task Driving with DRT task – SuRT task

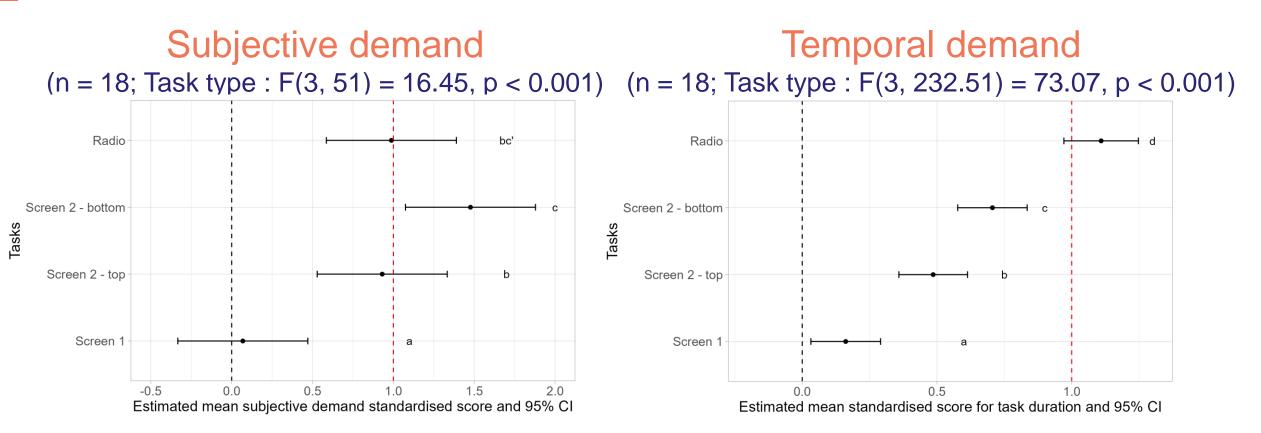
Statistical analysis

Temporal demand time to complete the task (The Observer, Noldus IT)

Application or radio task
24

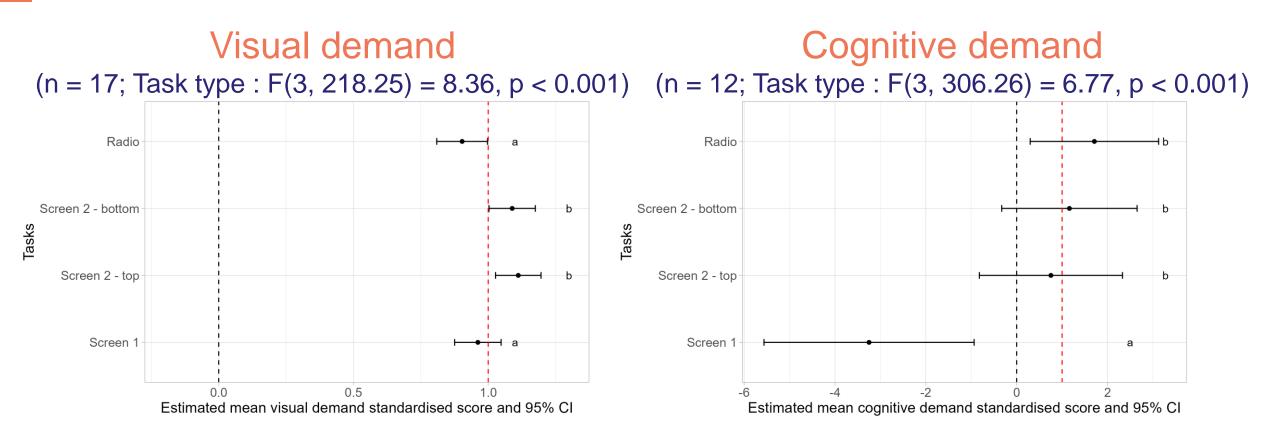
Cognitive demand

reaction time to a tactile stimulus (Red Scientific, USA)


 $\frac{Application\ or\ radio\ task\ -Driving\ with\ DRT\ task}{2\text{-}back\ Task\ -Driving\ with\ DRT\ task}$

• Comparison of 3 different mixed effect models (Task Type ; Professional Group ; Task Type x Professional Group)

Most likely model : Task Type effect (Screen 1 | Screen 2 - top | Screen 2 - bottom | Radio)


RESULTS (1/2)

↗ subjective demand & temporal demand with complexity of the interaction with the application ... but partly under the levels for high demands

RESULTS (2/2)

Visual & cognitive demands higher for any interactions with the 2nd screen of the application ... and around or above the levels for high demands

CONCLUSION

Opportunity for road operators to alert road users using a application for real-time traffic information feedback without causing distraction:

- Possible from the 1st screen
- Would be an issue from the 2nd screen

Recommendations:

- Using 1st screen for urgent events and 2nd screen without driving
- Training road operators to improve application knowledge;
- Changing the interface:
 - Items' presentation on the 2nd screen (grid -> list presentation; Kujala and Saariluoma, 2011),
 - font size,
 - contrast

Thanks for your attention

Lara Désiré lara.desire@cerema.fr

REFERENCES

Alliance of Automobile Manufacturers, & Driver Focus-Telematics Working Group. (2006). *Statement of principles, criteria and verification procedures on driver interactions with advanced in- vehicle information and communication systems including*. <u>https://autoalliance.org/wp-content/uploads/2018/08/Alliance-DF-T-Guidelines-Inc-2006-Updates.pdf</u></u>

Campbell, J. L., Carney, C., & Kantowitz, B. H. (1998). *Human factors design guidelines for Advanced Traveler Information Systems (ATIS) and Commercial Vehicle Operations (CVO)* (FHWA-RD-98-057). Battelle Human Factors Transportation Center. https://www.fhwa.dot.gov/publications/research/safety/98057/toc.cfm

Campbell, J. L., Lichty, M. G., Brown, J. L., Richard, C. M., Graving, J. S., Graham, J., O'Laughlin, M., Torbic, D., & Harwood, D. W. (2012). *Human Factors Guidelines for Road Systems : Second Edition* (NCHRP Report 600). Transportation Research Board. <u>http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_600Second.pdf</u>

Chahir, M., Bordel, S., & Somat, A. (2019). Étude d'impact organisationnel chez les gestionnaires routiers—Rapport final de l'action de recherche—Accompagnement des évolutions organisationnelles et humaines introduites par la conception et le déploiement d'une innovation technologique (C-ITS) par l'analyse du système humain-technologie-organisation (Livrable du projet SCOOP 2.3.5.3; p. 94).

Kujala, T., & Saariluoma, P. (2011). Effects of menu structure and touch screen scrolling style on the variability of glance durations during invehicle visual search tasks. *Ergonomics*, *54*(8), 716-732. <u>https://doi.org/10.1080/00140139.2011.592601</u>

Reimer, B., Mehler, B., Dobres, J., & Coughlin, J. F. (2013). The effects of a production level « voice-command » interface on driver behavior : Reported workload, physiology, visual attention, and driving performance (MIT AgeLabTechnical Report N° 2013-17A). Massachusetts Institute of Technology.

Strayer, D. L., Cooper, J. M., Goethe, R. M., McCarty, M. M., Getty, D. J., & Biondi, F. (2019). Assessing the visual and cognitive demands of invehicle information systems. Cognitive Research: Principles and Implications, 4(1), 18. <u>https://doi.org/10/gf7kgd</u>

