ANALYSING DRIVER (IN)ATTENTIVENESS

[https://www.codesign-lab.org/cognitive-vision/]

VASILIKI KONDYLI - MEHUL BHATT

ÖREBRO UNIVERSITY

CODESIGN LABEU / COGNITION. AI. INTERACTION. DESIGN.

DDI 2022 / OCTOBER 19 2022

- / Towards a Cognitive Complexity model
- combining Visuospatial and Interactional parameters /

COGNITIVE SCIENCE

CODESIGN LAB

COGNITION. ARTIFICIAL INTELLIGENCE. INTERACTION. DESIGN.

CoDesign is CONFLUENCE of (four) research areas, driven by bottom-up interdisciplinarity, and a mixed-methods mindset for identifying and pursuing human-behavioural research.

Focus on human-centred, socio-technologically motivated opportunities where basic research in Artificial Intelligence and Spatial Cognition, and Technological Artefacts emanating therefrom, ought to demonstrate their application, impact, and societal significance. ARTIFICIAL INTELLIGENCE

INTERACTION

CoDesign

COGNITIVE SCIENCE

DESIGN SCIENCE

DRIVER (IN)ATTENTIVENESS

"Develop a framework that serves as a uniform and shared reference for (replicable) experiments in visual (in)attention under ecologically valid naturalistic conditions encountered in everyday activities and related to decision-making."

INTERPERSONAL COMMUNICATION

EMBODIED MULTIMODAL INTERACTIONS

VISUO-LOCOMOTIVE PERCEPTION IN DRIVING

VISUOSPATIAL COMPLEXITY - CONTEXT

COMPLEXITY OF HUMAN PERFORMANCE

DRIVER (IN)ATTENTIVENESS

- aspects as found in naturalistic driving scenes?
- autonomous driving systems?

VISUO-LOCOMOTIVE PERCEPTION IN DRIVING

• How do people establish joint attention during interpersonal communication in the driving scene?

How does the visuospatial complexity of the environment affect gaze behaviour of a driver?

• How can we model cognitive human factors so that we can systematically study the combination of

How a holistic model of visuospatial complexity can be useful for the development of novel

RELATED PUBLICATIONS / AI AND COGNITION

[https://www.codesign-lab.org/cognitive-vision/]

[https://codesign-lab.org/select-papers/]

VISUO-LOCOMOTIVE PERCEPTION / KEY PUBLICATIONS

Interpersonal communication and interactions are vital for safe and effective coordination of actions in everyday roadside engagements: walking around, driving, riding a bike etc. Failure in interpersonal communication leads to a lack of mutual understanding of a situation and it is responsible for a great number of roadside accidents [1, 2]. With further strides in the autonomous vehicles industry and the present impetus on high-level visual intelligence technologies [3, 4], it will therefore be necessary to account for the role of interpersonal communication on the street and articulate human-centred performance benchmarks, e.g., from the viewpoint of training, testing and validation as part of statutory compliance measures.

In: STAIRS at ECAI 2020: European Conference on Artificial Intelligence 2020.

search primarily being on two basic considerations: how fast to drive, and which way and how much to steer. This

is necessary, but inadequate if autonomous vehicles are to become commonplace and function with humans: not

everything in autonomous vehicles is about realtime control/decision-making; several human-machine interaction

requirements (e.g., for diagnostic communication, universal design) also exist. The 20 key propositions elicited

by the German federal ministry BMVI highlight a range of factors pertaining to safety, utilitarian considerations,

human rights, statutory liability, technological transparency, data management and privacy etc. Ethically driven standardisation and regulation will require addressing challenges in foundational human-centred AI technology,

CO DESIGN LAB EU https://codesign-lab.org/

131

Multimodality on the Road: **Towards Evidence-Based Cognitive** Modelling of Everyday Roadside Human Interactions

Vasiliki KONDYLI, and Mehul BHATT Örebro University, Sweden CoDesign Lab - Cognitive Vision www.codesign-lab.org/cognitive-vision

Abstract We propose an evidence based methodology for the systematic analysis and cognitive characterisation of multimodal interactions in naturalistic roadside situations such as driving, crossing a street etc. Founded on basic human modalities of embodied interaction, the proposed methodology utilises three key characteristics crucial to roadside situations, namely: explicit and implicit mode of interaction, formal and informal means of signalling, and levels of context-specific (visual) attention. Driven by the fine-grained interpretation and modelling of human behaviour in naturalistic settings, we present an application of the proposed model with examples from a work-in-progress dataset consisting of baseline multimodal interaction scenarios and variations built therefrom with a particular emphasis on joint attention and diversity of modalities employed. Our research aims to open up an interdisciplinary frontier for the human-centred design and evaluation of artificial cognitive technologies (e.g., autonomous vehicles, robotics) where embodied (multimodal) human interaction and normative compliance are of central signifi-

Keywords. multimodal interaction, interpersonal communication, naturalistic

Visuo-Locomotive Complexity as a Component of **Parametric Systems for Architecture Design**

Vasiliki Kondyli, Mehul Bhatt (Örebro University, Sweden) Evgenia Spyridonos (University of Stuttgart, Germany)

Abstract A people-centred approach for designing large-scale built-up spaces necessitates systematic anticipation of user's embodied visuo-locomotive experience from the viewpoint of human-environment interaction factors pertaining to aspects such as navigation, wayfinding, usability. In this context, we develop a behaviour-based visuo-locomotive complexity model that functions as a key correlate of cognitive performance vis-a-vis internal navigation in built-up spaces. We also demonstrate the model's implementation and application as a parametric tool for the identification and manipulation of the architectural morphology along a navigation path as per the parameters of the proposed visuospatial complexity model. We present examples based on an empirical study in two healthcare buildings, and showcase the manner in which a dynamic and interactive parametric (complexity) model can promote behaviour-based decisionmaking throughout the design process to maintain desired levels of visuospatial complexity as part of a navigation or wayfinding experience.

Keywords: Visual Perception - Environmental Psychology - Architecture Design - Parametric Design - Cognitive Computational Modelling - Spatial Cognition - Al and Design

Publication Note

2020

Dec

6

-

[cs.CY]

2.10710v1

arXiv:201

This is a preprint of the contribution published as part of the proceedings of ICoRD 2021: 8th International Conference on Research into Design, IDC School of Design (IIT Mumbai, India). ICoRD 2021, www.idc.iitb.ac.in/icord2021/.

The overall scientific agenda driving this research may be consulted here: The DesignSpace Group / www.design-space.org

Select publications related to this research are available at: www.codesign-lab.org/select-papers (under DesignSpace)

CoDesign Lab / www.codesign-lab.org > info@codesign-lab.org — The DesignSpace Group / www.design-space.org

VISUO-LOCOMOTIVE PERCEPTION FOR AL / KEY PUBLICATIONS

Grounding Embodied Multimodal Interaction

Towards Behaviourally Established Semantic Foundations for Human-Centred AI

Vasiliki Kondyli¹, Jakob Suchan² and Mehul Bhatt¹

¹Örebro University, Sweden ²German Aerospace Center (DLR), Germany

CoDesign Lab » Cognition. AI. Interaction. Design. info@codesign-lab.org / https://codesign-lab.org

Abstract

We position recent and emerging research in cognitive vision and perception addressing three key questions: (1) What kind of relational abstraction mechanisms are needed to perform (explainable) grounded inference -e.g., question-answering, qualitative generalisation, hypothetical reasoning- relevant to embodied multimodal interaction? (2) How can such abstraction mechanisms be founded on behaviourally established cognitive human-factors emanating from naturalistic empirical observation? and (3) How to articulate behaviourally established abstraction mechanisms as formal declarative models suited for grounded knowledge representation and reasoning (KR) as part of large-scale hybrid AI and computational cognitive systems.

We contextualise (1-3) in the backdrop of recent results at the interface of AI/KR, and Spatial Cognition and Computation. Our main purpose is to emphasise the importance of behavioural research based foundations for next-generation, human-centred AI, e.g., as relevant to applications in Autonomous Vehicles, Social and Industrial Robots, and Visuo-Auditory Media.

Keywords

Multimodal Interaction, Commonsense Reasoning, Declarative Spatial Reasoning, Declarative AI, Explainable AI, Cognitive Human-Factors, Cognitive Systems

1. Motivation

Multimodality in interaction is an inherent aspect of human activity, be it in social, professional, or everyday mundane contexts. Next-generation AI technologies, aiming for compliance with human-centred ethical and legal requirements, performance benchmarks, and inclusive usability expectations will require an inherent foundational capacity to analyse -e.g., understand, explain, anticipate- everyday interactional multimodality in naturalistic settings involving technology mediated collaborative assistance of humans. Amongst other things, this necessitates that the foundational building blocks of such next-generation systems be semantically aligned with the descriptive complexity of human task conceptualisation and performance expectations.

Declaratively Mediated Multimodality. The significance of "grounding" in semiotic construction, e.g., enabling high-level meaning-making, has been long-established in Artificial

KR4HI 2022: Knowledge Representation for Hybrid Intelligence, June 14, 2022, Amsterdamm, The Netherlands vasiliki.kondyli@oru.se (V. Kondyli); jakob.suchan@dlr.de (J. Suchan); mehul.bhatt@oru.se (M. Bhatt) © 0 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0). CEUR Workshop Proceedings (CEUR-WS.org)

CO DESIGN LAB EU https://codesign-lab.org/

Check for updates

https://doi.org/10.1016/j.artint.2021.103522

0004-3702/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

ABSTRACT

www.elsevier.com/locate/artint

We demonstrate the need and potential of systematically integrated vision and semantics solutions for visual sensemaking in the backdrop of autonomous driving. A general neurosymbolic method for online visual sensemaking using answer set programming (ASP) is systematically formalised and fully implemented. The method integrates state of the art in visual computing, and is developed as a modular framework that is generally usable within hybrid architectures for realtime perception and control. We evaluate and demonstrate with community established benchmarks KITTIMOD, MOT-2017, and MOT-2020. As use-case, we focus on the significance of human-centred visual sensemaking -e.g., involving semantic representation and explainability, questionanswering, commonsense interpolation- in safety-critical autonomous driving situations. The developed neurosymbolic framework is domain-independent, with the case of autonomous driving designed to serve as an exemplar for online visual sensemaking in diverse cognitive interaction settings in the backdrop of select human-centred AI technology design considerations.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Autonomous driving research has received enormous academic & industrial interest in recent years (Sec 5). This surge has coincided with (and been driven by) advances in deep learning based computer vision research. Although end-to-end deep learning based vision & control has (arguably) been successful for self-driving vehicles, we posit that there is a clear need and tremendous potential for hybrid visual sensemaking solutions that integrate vision and semantics towards fulfilling essential legal and ethical responsibilities involving explainability, human-centred AI (Artificial Intelligence), and industrial standardisation (e.g, pertaining to representation, realisation of rules and norms, fulfilling statutory obligations).

A COGNITIVE MODEL OF VISUOSPATIAL COMPLEXITY / INTERACTIONS

A. Mode

Explicit Interaction Implicit Interaction

B. Method

Formal Device-based Informal - Device-based Formal Body-based Informal Body-based

C. Level of Social Attention

Individual Monitoring Common Mutual Joint (Shared)

Modalities

Speech Head Movements Facial Expressions Gestures Body Postures Gaze Auditory Cues

Insta

ituations. Advances in Transdisciplinary Kondyli, V. & Bhatt, M. (2020). Multimodality on the Road: Towards Evidence-Based Cognitive Modelling of Engineering, II, Proceedings of DHM 2020: 6th International Digital Human Modelling Symposium 2020 (DHM 2020), Skövde, Swed

A. Mode

Explicit Interaction Implicit Interaction

B. Method

Formal Device-based Informal - Device-based Formal Body-based Informal Body-based

C. Level of Social Attention

Individual Monitoring Common Mutual Joint (Shared)

Modalities

Speech Head Movements Facial Expressions Gestures **Body Postures** Gaze Auditory Cues

ituations. Advances in Transdisciplinary Kondyli, V. & Bhatt, M. (2020). Multimodality on the Road: Towards Evidence-Based Cognitive Modelling of Engineering, II, Proceedings of DHM 2020: 6th International Digital Human Modelling Symposium 2020 (DHM 2020), Skövde, Swea

Insta

A. Mode

Explicit Interaction Implicit Interaction

B. Method

Formal Device-based Informal - Device-based Formal Body-based Informal Body-based

C. Level of Social Attention

Individual Monitoring Common Mutual Joint (Shared)

Modalities

Speech Head Movements Facial Expressions Gestures **Body Postures** Gaze Auditory Cues

Kondyli, V. & Bhatt, M. (2020). Multimodality on the Road: Towards Evidence-Based Cognitive Modelling of Engineering, II, Proceedings of DHM 2020: 6th International Digital Human Modelling Symposium 2020 (DHM 2020), Skövde, Swea ituations. Advances in Transdisciplinary

Insta

A. Mode

Explicit Interaction Implicit Interaction

B. Method

Formal Device-based Informal - Device-based Formal Body-based Informal Body-based

C. Level of Social Attention

Individual Monitoring Common Mutual Joint (Shared)

Modalities

Speech Head Movements Facial Expressions Gestures **Body Postures** Gaze Auditory Cues

(a) Driver (pov) & Traffic Officers

Insta

Kondyli, V. & Bhatt, M. (2020). Multimodality on the Road: Towards Evidence-Based Cognitive Modelling of ituations. Advances in Transdisciplinary Engineering, II, Proceedings of DHM 2020: 6th International Digital Human Modelling Symposium 2020 (DHM 2020), Skövde, Swea

INTERACTIONAL ATTRIBUTES / SEMANTIC ANNOTATIONS

	Grid Text Subtitles Lexicon Comments Recognizers Metadata Controls	Stati
	Volume: 100 1	Direc Mani Roac Audi Trans
00:00:14.987	Selection: 00:00:14.356 - 00:00:14.987 631 \searrow \bigvee \checkmark <td< th=""><th>Natu Peop Musi</th></td<>	Natu Peop Musi
		Duile
SpatialPosition(ped2_blue		Inter
SpatialPosition(ped3_man_kid)	above(ped3_man_kid, zebra)	Loca
SpatialPosition(ped4_stroller)	above(ped4_stroller, zebra)	Veloc
Gaze		Move
Gaze(dr_ego)		Visib
Gaze(ped1_black)	at looking_at(_looking_at(ped1_black, car1_looking_at(pe_looking_at(ped1_black, van_whit_looking_at(ped1_black, unknown) looking_at(ped1_black, van_v	Mov
Gaze(ped2 blue)	looking_at(looking_at(ped2_blue, unknown) loo looking_at(ped2_b looking_at(ped2_blue, van_whit looking_at(ped2_blue, unknown)	Spat
	looking_at(ped3_man_kid, unknown) looking_at(ped3_man_kid, car3_grey)	Неас
Gaze(ped3_man_kid) [4]	looking at(ped4_stroller_upknown)	Gaze
Gaze(ped4_stroller)		Hand
HumanAction		Body
HumanAction(dr_ego)		
HumanAction(ped1_black)		
HumanAction(ped2_blue)		
HumanAction(ped3_man_kid)	facial_exp	
HumanAction(ped4_stroller)		
HeadMovement		
HeadMovement(dr_ego)		
HeadMovement(ped1_black) steady_h	turn_right_turn_left_steady_head(ped1_turn_rightturn_downwards_turn_downwards_right_hea_stea_turn_upw_steady_head(ped1_black)	teady_head

Visuospatial Static Objects/People Noving Objects/People Direction of Motion Manifest Cues Road Type

Auditory

nteractional

_ocation /elocity Safety Interactions Movement Type /isibility Movement Status Spatial Position Human action Head Movement Gaze Hand Action Body Pose

SP (Speech) — **HM** (Head Movement) — **FE** (Facial Expressions) —

- A P with a kid's stroller is crossing a two-lanes road while
- **B** C changes lane / turns in front of a car.
- C. Inattentive group of P crossing the street, D approaches
- D. P looks at the traffic light that turns red, signalling and street and crossing inattentively, D approaches the crossi
- E. P emerges between parked cars and enters a parked car.
- F. P on wheelchair approaches a zebra crossing, D and C a to P
- G. D turns to the street and P who are walking on the street
- H. P (or group of pedestrians) cross half way a double-way approaches
- I. Low traffic road, P on the side of the street negotiate between stopped cars
- J. P exits a shop/parking slot and walks on the street, D a
- K. P is close to a zebra crossing, talking on the phone or approaches
- L. C standing close to a bike, and get on the bike, with no
- M. P steps on the road because of an obstacle on the paver while D approaches
- N. M overtakes a car, looking for occluded pedestrians, and
- O. Policemen regulates traffic, instruct D for the direction to

- GE (Gestures) — BP (Body Postures) — GZ (Ge	aze) — AU (Auditor
	MODALITIES
D1-D2 are approaching.	HM, BP, GZ, FE
seeking attention and signalling d taking to other P on the other side of the ing D approaches pproach from different sides and give priority	HM, GZ, AU GE, GZ, BP SP, FE, GE, BP, GA HM, GZ, AU HM, FE, GE, GA
et move to the side street, they do not check the second lane, D	AU, HM, BP AU, BP
crossing with D, while M and C are passing	GZ, AU, HM
pproaches r texting with no clear intention to cross, D	HM, BP, GA BP, FE, SP
clear intention to start driving men <u>t</u> , C avoids pedestrian and changes lane,	BP, HM HM, GE, BP, GA
l gives priority to P who is crossing too follow	GZ, HM BP, AU, GE

INTERACTIONAL ATTRIBUTES / FROM REAL-WORLD TO VR

D1 approaches P turns the	joint attention		
Real-world scene analysis	·		
Variation 1 - Explicit Informal Interaction		D2 detec	
Variation 2 - Implicit Informal Interaction		D2	

A COGNITIVE MODEL OF VISUOSPATIAL COMPLEXITY / ENVIRONMENTAL ATTRIBUTES

COGNITIVE MODEL OF VISUOSPATIAL COMPLEXITY / ENVIRONMENTAL ATTRIBUTES

Quantitative

SIZE

CLUTTER Quantity Variety of Colors Variety of Shapes/Objects **Objects Density** Edges Density Luminance Saliency Target-background similarity

Structural

Repetition Symmetry Order Homogeneity/Heterogeneity Regularity Openness Grouping

Dynamic

Motion Flicker Speed / Direction

Quantitative attributes

Dynamic attributes

Structrural attributes

dynamic

A COGNITIVE MODEL OF VISUOSPATIAL COMPLEXITY / EVALUATION

VISUOSPATIAL COMPLEXITY / VISUAL CLUTTER & STRUSTURAL SIMILARITY

video stimuli -- instances of the dataset

27 VIDEOS

Locations: New York Chicago Las Vegas Toronto Nottingham London Paris Amsterdam Hong Kong Rural Australia Rural Iceland South Korea Mumbai Suburban Russia Tokyo

Conditions:

Morning Afternoon Evening Night

Fog/Rain/Sun

VISUOSPATIAL COMPLEXITY / SEMANTIC ANNOTATIONS

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Static Objects/Per Moving Objects/Per Direction of Motio Direction of Motio Manifest Cues Road Type 00:02:00.60 00:02:03.48 00:02:05.68 Auditory Transport Nature People Music
	Buildings
Amsterdam_Driving1_Scene.mp4 V00 00:02:00.000 00:02:10.000 00:02:20.000 00:02:30.000 00:02:40.000 00:02:30.000 Motion V00 00:02:00.000 00:02:10.000 00:02:20.000 00:02:30.000 00:02:40.000 00:02:50.000 Image: transmission (No_static_vehicles) Image: transmission (No_static_pedestrians) Image: transmission (No_static_motor) Image: transmission (No_static_motor) Image: transmission (No_moving_motor) Image: transmission (No_moving_motor) <thimage: (no_moving_motor)<="" th="" transmission=""></thimage:>	00:03:00. Interactional 00:03:00. Location 00:03:00. Safety Interactions 1 Movement Type 4 Visibility 0 Spatial Position 9 11 Head Movement Gaze Hand Action
$\begin{bmatrix} 13 \\ - Motion(No_static_cyc) \\ \hline 130 \\ - Motion(No_moving_cyc) \\ \hline 16 \\ 5 \\ 4 \\ 3 \\ 2 \\ - Motion(No_moving_cyc) \\ \hline 1 \\ 2 \\ - Motion(No_moving_cyc) \\ \hline 1 \\ 2 \\ - Motion(No_moving_cyc) \\ \hline 1 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$	Pland Action 2 Body Pose 5 1
Image: second	6 4 4 2 1 2 0 0 0 0
Image: International system Image: International system Image: Imag	

Visuospatial eople People on

าร

VISUOSPATIAL COMPLEXITY / LOW & HIGH LEVEL ATTRIBUTES

video stimuli -- instances of the dataset

APPLICATIONS

LARGE-SCALE VISUAL PERCEPTION STUDIES IN DRIVER (IN)ATTENTIVENESS

VISUOLOCOMOTIVE EXPERIENCE / SYSTEMATIC VISUAL ATTENTION STUDIES

Inattention Blindness

- 80 participants
- 1 hour task
- 36 interactions
- 12 levels of visuospatial complexity
- 52 building blocks

VR headset + eye-tracking steering wheel detection buttons gear box pedals

VISUO-LOCOMOTIVE PERCEPTION / KEY PUBLICATIONS

Interpersonal communication and interactions are vital for safe and effective coordination of actions in everyday roadside engagements: walking around, driving, riding a bike etc. Failure in interpersonal communication leads to a lack of mutual understanding of a situation and it is responsible for a great number of roadside accidents [1, 2]. With further strides in the autonomous vehicles industry and the present impetus on high-level visual intelligence technologies [3, 4], it will therefore be necessary to account for the role of interpersonal communication on the street and articulate human-centred performance benchmarks, e.g., from the viewpoint of training, testing and validation as part of statutory compliance measures.

In: STAIRS at ECAI 2020: European Conference on Artificial Intelligence 2020.

search primarily being on two basic considerations: how fast to drive, and which way and how much to steer. This

is necessary, but inadequate if autonomous vehicles are to become commonplace and function with humans: not

everything in autonomous vehicles is about realtime control/decision-making; several human-machine interaction

requirements (e.g., for diagnostic communication, universal design) also exist. The 20 key propositions elicited

by the German federal ministry BMVI highlight a range of factors pertaining to safety, utilitarian considerations,

human rights, statutory liability, technological transparency, data management and privacy etc. Ethically driven standardisation and regulation will require addressing challenges in foundational human-centred AI technology,

CO DESIGN LAB EU https://codesign-lab.org/

131

Multimodality on the Road: **Towards Evidence-Based Cognitive** Modelling of Everyday Roadside Human Interactions

Vasiliki KONDYLI, and Mehul BHATT Örebro University, Sweden CoDesign Lab - Cognitive Vision www.codesign-lab.org/cognitive-vision

Abstract We propose an evidence based methodology for the systematic analysis and cognitive characterisation of multimodal interactions in naturalistic roadside situations such as driving, crossing a street etc. Founded on basic human modalities of embodied interaction, the proposed methodology utilises three key characteristics crucial to roadside situations, namely: explicit and implicit mode of interaction, formal and informal means of signalling, and levels of context-specific (visual) attention. Driven by the fine-grained interpretation and modelling of human behaviour in naturalistic settings, we present an application of the proposed model with examples from a work-in-progress dataset consisting of baseline multimodal interaction scenarios and variations built therefrom with a particular emphasis on joint attention and diversity of modalities employed. Our research aims to open up an interdisciplinary frontier for the human-centred design and evaluation of artificial cognitive technologies (e.g., autonomous vehicles, robotics) where embodied (multimodal) human interaction and normative compliance are of central signifi-

Keywords. multimodal interaction, interpersonal communication, naturalistic

Visuo-Locomotive Complexity as a Component of **Parametric Systems for Architecture Design**

Vasiliki Kondyli, Mehul Bhatt (Örebro University, Sweden) Evgenia Spyridonos (University of Stuttgart, Germany)

Abstract A people-centred approach for designing large-scale built-up spaces necessitates systematic anticipation of user's embodied visuo-locomotive experience from the viewpoint of human-environment interaction factors pertaining to aspects such as navigation, wayfinding, usability. In this context, we develop a behaviour-based visuo-locomotive complexity model that functions as a key correlate of cognitive performance vis-a-vis internal navigation in built-up spaces. We also demonstrate the model's implementation and application as a parametric tool for the identification and manipulation of the architectural morphology along a navigation path as per the parameters of the proposed visuospatial complexity model. We present examples based on an empirical study in two healthcare buildings, and showcase the manner in which a dynamic and interactive parametric (complexity) model can promote behaviour-based decisionmaking throughout the design process to maintain desired levels of visuospatial complexity as part of a navigation or wayfinding experience.

Keywords: Visual Perception - Environmental Psychology - Architecture Design - Parametric Design - Cognitive Computational Modelling - Spatial Cognition - Al and Design

Publication Note

2020

Dec

6

-

[cs.CY]

2.10710v1

arXiv:201

This is a preprint of the contribution published as part of the proceedings of ICoRD 2021: 8th International Conference on Research into Design, IDC School of Design (IIT Mumbai, India). ICoRD 2021, www.idc.iitb.ac.in/icord2021/.

The overall scientific agenda driving this research may be consulted here: The DesignSpace Group / www.design-space.org

Select publications related to this research are available at: www.codesign-lab.org/select-papers (under DesignSpace)

CoDesign Lab / www.codesign-lab.org > info@codesign-lab.org — The DesignSpace Group / www.design-space.org

APPLICATIONS

HUMAN-CENTRED BENCHMARKING FOR AUTONOMOUS DRIVING SYSTEMS

VISUOSPATIAL COMPLEXITY / COMMONSENSE VISUAL SENSEMAKING

J. Suchan & Bhatt, M. S. Varaadarajan (2021). MCommosense visual sense making for autonomous driving. On generated neurosymbilic online abduction integrating vision and semantics. Artificial Intelligence 299.

VISUOSPATIAL COMPLEXITY / COMMONSENSE VISUAL SENSEMAKING

J. Suchan & Bhatt, M. S. Varaadarajan (2021). MCommosense visual sense making for autonomous driving. On generated neurosymbilic online abduction integrating vision and semantics. Artificial Intelligence 299.

SYSTEMATIC ANALYSIS

COGNITIVE CHARACTERISATION & MODELLING

TRAINING & TESTING IN BENCHMARK DATASETS

EVALUATION SCHEMA

CETC

Instance 10

cking/Head rotaion/Reaction time	Mode	Method	Social Attention	n Moda
n Time ion Rate n on of Fixations Instance 10	explicit	formal	Joint	
e Velocity g angle			Common	
	implicit	informal	Monitoring	

HUMAN PERFORMANCE

EMBODIED MULTIMODAL INTERACTIONS

VISUO-LOCOMOTIVE PERCEPTION FOR AL / KEY PUBLICATIONS

Grounding Embodied Multimodal Interaction

Towards Behaviourally Established Semantic Foundations for Human-Centred AI

Vasiliki Kondyli¹, Jakob Suchan² and Mehul Bhatt¹

¹Örebro University, Sweden ²German Aerospace Center (DLR), Germany

CoDesign Lab » Cognition. AI. Interaction. Design. info@codesign-lab.org / https://codesign-lab.org

Abstract

We position recent and emerging research in cognitive vision and perception addressing three key questions: (1) What kind of relational abstraction mechanisms are needed to perform (explainable) grounded inference -e.g., question-answering, qualitative generalisation, hypothetical reasoning- relevant to embodied multimodal interaction? (2) How can such abstraction mechanisms be founded on behaviourally established cognitive human-factors emanating from naturalistic empirical observation? and (3) How to articulate behaviourally established abstraction mechanisms as formal declarative models suited for grounded knowledge representation and reasoning (KR) as part of large-scale hybrid AI and computational cognitive systems.

We contextualise (1-3) in the backdrop of recent results at the interface of AI/KR, and Spatial Cognition and Computation. Our main purpose is to emphasise the importance of behavioural research based foundations for next-generation, human-centred AI, e.g., as relevant to applications in Autonomous Vehicles, Social and Industrial Robots, and Visuo-Auditory Media.

Keywords

Multimodal Interaction, Commonsense Reasoning, Declarative Spatial Reasoning, Declarative AI, Explainable AI, Cognitive Human-Factors, Cognitive Systems

1. Motivation

Multimodality in interaction is an inherent aspect of human activity, be it in social, professional, or everyday mundane contexts. Next-generation AI technologies, aiming for compliance with human-centred ethical and legal requirements, performance benchmarks, and inclusive usability expectations will require an inherent foundational capacity to analyse -e.g., understand, explain, anticipate- everyday interactional multimodality in naturalistic settings involving technology mediated collaborative assistance of humans. Amongst other things, this necessitates that the foundational building blocks of such next-generation systems be semantically aligned with the descriptive complexity of human task conceptualisation and performance expectations.

Declaratively Mediated Multimodality. The significance of "grounding" in semiotic construction, e.g., enabling high-level meaning-making, has been long-established in Artificial

KR4HI 2022: Knowledge Representation for Hybrid Intelligence, June 14, 2022, Amsterdamm, The Netherlands vasiliki.kondyli@oru.se (V. Kondyli); jakob.suchan@dlr.de (J. Suchan); mehul.bhatt@oru.se (M. Bhatt) © 0 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0). CEUR Workshop Proceedings (CEUR-WS.org)

CO DESIGN LAB EU https://codesign-lab.org/

Check for updates

https://doi.org/10.1016/j.artint.2021.103522

0004-3702/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

ABSTRACT

www.elsevier.com/locate/artint

We demonstrate the need and potential of systematically integrated vision and semantics solutions for visual sensemaking in the backdrop of autonomous driving. A general neurosymbolic method for online visual sensemaking using answer set programming (ASP) is systematically formalised and fully implemented. The method integrates state of the art in visual computing, and is developed as a modular framework that is generally usable within hybrid architectures for realtime perception and control. We evaluate and demonstrate with community established benchmarks KITTIMOD, MOT-2017, and MOT-2020. As use-case, we focus on the significance of human-centred visual sensemaking -e.g., involving semantic representation and explainability, questionanswering, commonsense interpolation- in safety-critical autonomous driving situations. The developed neurosymbolic framework is domain-independent, with the case of autonomous driving designed to serve as an exemplar for online visual sensemaking in diverse cognitive interaction settings in the backdrop of select human-centred AI technology design considerations.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Autonomous driving research has received enormous academic & industrial interest in recent years (Sec 5). This surge has coincided with (and been driven by) advances in deep learning based computer vision research. Although end-to-end deep learning based vision & control has (arguably) been successful for self-driving vehicles, we posit that there is a clear need and tremendous potential for hybrid visual sensemaking solutions that integrate vision and semantics towards fulfilling essential legal and ethical responsibilities involving explainability, human-centred AI (Artificial Intelligence), and industrial standardisation (e.g, pertaining to representation, realisation of rules and norms, fulfilling statutory obligations).

CONCLUSION | COGNITIVE-BASED VISUOSPATIAL COMPLEXITY MODEL

- Common framework for embodied naturalistic behavioural studies on driver (in)attention
- Analysis and interpretation of human interactions /visuospatial complexity

 human-centred computational models
- Human factors not sufficiently explored in autonomous driving research
- Provide guideline to create human-centred benchmarking
- Evaluate datasets based on human-centred factors

COGNITION | AI |

THANK YOU

[https://www.codesign-lab.org/cognitive-vision/] [https://codesign-lab.org/select-papers/]

DESIGNSPACE GROUP COGNITIVE VISION SPATIAL REASONING

INTERACTION | DESIGN |